Euler Problem 1

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

My Solution
import numpy as np

def sum_of_multiples(multiples=[3,5],upper_lim=1000):

  # count multiples
  first = sum(np.arange(0,upper_lim,multiples[0]))
  second = sum(np.arange(0,upper_lim,multiples[1]))

  # remove common multiples so don't double count
  common_multiples = multiples[0]*multiples[1]
  common = sum(np.arange(0,upper_lim,common_multiples))

  sum_ = first + second - common
  return sum_

sum_of_multiples()

Answer: 233,168

Euler Problem 2

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

My Solution
def sum_even_fib(upper_lim=4000000):
  k0 = 1
  k1 = 2
  k = 3
  total = 2
  while (k<=upper_lim):
      k0 = k1
      k1 = k
      k = k0 + k1
      if k%2==0:
          total+=k
  return total

sum_even_fib()

Answer: 4,613,732

Euler Problem 3

The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143 ?

My Solution
import numpy as np

def largest_prime_factor(n):

  # Function to check if number is prime
  # checks numbers from 2 to sqrt of n to save time
  def check_prime(n):
      for a in range(2,int(n**0.5)+1):
          if n % a == 0:
              return False
      return True

  # check factors and update largest prime found
  largest_prime = np.nan
  for a in range(2,int(np.sqrt(n))):
      if (n % a == 0) & (check_prime(a)):
          largest_prime = a
  return largest_prime

largest_prime_factor(600851475143)

Answer: 6,857

Euler Problem 4

A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.

Find the largest palindrome made from the product of two 3-digit numbers.

My Solution
def is_palindrome(n):
  return str(n) == str(n)[::-1]

def largest_3_digit():
  largest = 0
  # Look at 3 digit combos
  for a in reversed(range(100,999)):
      for b in reversed(range(100,999)):
          # check if palindrome and if larger than current value
          if (is_palindrome(a*b)) & (a*b>largest): largest = a*b
  return largest

 largest_3_digit()

Answer: 906,609

Euler Problem 6

The sum of the squares of the first ten natural numbers is,

$$1^2 + 2^2 + … + 10^2 = 385$$

The square of the sum of the first ten natural numbers is,

$$(1 + 2 + … + 10)^2 = 55^2 = 3025$$

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is $3025 - 385 = 2640$.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

My Solution
import numpy as np

def sum_of_sq_and_sq_of_sum():
  one_hund = np.arange(1,101)
  sum_of_sq = sum(one_hund**2)
  sq_of_sum = sum(one_hund)**2
  return sq_of_sum-sum_of_sq

sum_of_sq_and_sq_of_sum()

Answer: 25,164,150

Euler Problem 7

By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.

What is the 10 001st prime number?

My Solution
# check if number is prime
def check_prime(n):
  for a in range(2,int(n**0.5)+1):
      if n % a == 0:
          return False
  return True

# Start with initial primes and add to list if prime
def get_primes(n):
  primes =[2, 3, 5]
  num = 6
  while len(primes)<n:
      if check_prime(num) : primes.append(num)
      num+=1
  return primes

primes = get_primes(10001)
primes[-1]

Answer: 104,743

Euler Problem 8

The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.

Problem Info

73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450

Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?

My Solution

num = 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450

def find_largest_product(num,n):
  str_num = str(num)
  largest_product = 0
  for j in range(0,len(str_num)-n):
      product_str = str_num[j:j+n]
      product = 1
      for char in product_str:
          product = product * int(char)
      if product > largest_product: largest_product = product
  return largest_product

find_largest_product(num,13)

''' Other solution found online
max_prod, adj = 0, 13
for i in range(len(digs)-adj):
  max_prod = max(max_prod, math.prod([int(d) for d in digs[i:i+adj]]))
print(max_prod)
'''

Answer: 23,514,624,000

Euler Problem 10

The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.

Find the sum of all the primes below two million.

My Solution
def sum_primes(upper_lim=2000000):
  arr = range(2,upper_lim)
  sum = 0

  def check_prime(n):
      for a in range(2,int(n**0.5)+1):
          if n % a == 0:
              return False
      return True

  for a in arr:
      if check_prime(a):
          sum+=a

  return sum

Answer: 142,913,828,922